Skip to content

argmax

Returns the indices of the maximum values along a specified axis. When the maximum value occurs multiple times, only the indices corresponding to the first occurrence are returned.

Parameters:

Name Type Description Default
x SparseArray

Input array. The fill value must be 0.0 and all non-zero values must be greater than 0.0.

required
axis int

Axis along which to search. If None, the function must return the index of the maximum value of the flattened array. Default: None.

None
keepdims bool_

If True, the reduced axes (dimensions) must be included in the result as singleton dimensions, and, accordingly, the result must be compatible with the input array. Otherwise, if False, the reduced axes (dimensions) must not be included in the result. Default: False.

False

Returns:

Name Type Description
out ndarray

If axis is None, a zero-dimensional array containing the index of the first occurrence of the maximum value. Otherwise, a non-zero-dimensional array containing the indices of the maximum values.

Source code in sparse/numba_backend/_coo/common.py
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
def argmax(x, /, *, axis=None, keepdims=False):
    """
    Returns the indices of the maximum values along a specified axis.
    When the maximum value occurs multiple times, only the indices
    corresponding to the first occurrence are returned.

    Parameters
    ----------
    x : SparseArray
        Input array. The fill value must be ``0.0`` and all non-zero values
        must be greater than ``0.0``.
    axis : int, optional
        Axis along which to search. If ``None``, the function must return
        the index of the maximum value of the flattened array. Default: ``None``.
    keepdims : bool, optional
        If ``True``, the reduced axes (dimensions) must be included in the result
        as singleton dimensions, and, accordingly, the result must be compatible
        with the input array. Otherwise, if ``False``, the reduced axes (dimensions)
        must not be included in the result. Default: ``False``.

    Returns
    -------
    out : numpy.ndarray
        If ``axis`` is ``None``, a zero-dimensional array containing the index of
        the first occurrence of the maximum value. Otherwise, a non-zero-dimensional
        array containing the indices of the maximum values.
    """
    return _arg_minmax_common(x, axis=axis, keepdims=keepdims, mode="max")