Load a sparse matrix in numpy's .npz
format from disk.
Note: This is not binary compatible with scipy's save_npz()
output. This binary format is not currently stable.
Will only load files saved by this package.
Parameters:
Name |
Type |
Description |
Default |
filename
|
file-like object, string, or pathlib.Path
|
The file to read. File-like objects must support the
seek() and read() methods.
|
required
|
Returns:
Type |
Description |
SparseArray
|
The sparse matrix at path filename .
|
Examples:
See sparse.save_npz
for usage examples.
See Also
Source code in sparse/numba_backend/_io.py
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132 | def load_npz(filename):
"""Load a sparse matrix in numpy's `.npz` format from disk.
Note: This is not binary compatible with scipy's `save_npz()`
output. This binary format is not currently stable.
Will only load files saved by this package.
Parameters
----------
filename : file-like object, string, or pathlib.Path
The file to read. File-like objects must support the
`seek()` and `read()` methods.
Returns
-------
SparseArray
The sparse matrix at path `filename`.
Examples
--------
See [`sparse.save_npz`][] for usage examples.
See Also
--------
- [`sparse.save_npz`][]
- [`scipy.sparse.save_npz`][]
- [`scipy.sparse.load_npz`][]
- [`numpy.savez`][]
- [`numpy.load`][]
"""
with np.load(filename) as fp:
try:
coords = fp["coords"]
data = fp["data"]
shape = tuple(fp["shape"])
fill_value = fp["fill_value"][()]
return COO(
coords=coords,
data=data,
shape=shape,
sorted=True,
has_duplicates=False,
fill_value=fill_value,
)
except KeyError:
pass
try:
data = fp["data"]
indices = fp["indices"]
indptr = fp["indptr"]
comp_axes = fp["compressed_axes"]
shape = tuple(fp["shape"])
fill_value = fp["fill_value"][()]
return GCXS(
(data, indices, indptr),
shape=shape,
fill_value=fill_value,
compressed_axes=comp_axes,
)
except KeyError as e:
raise RuntimeError(f"The file {filename!s} does not contain a valid sparse matrix") from e
|