Source code for sparse._common

import numpy as np

from ._utils import check_compressed_axes
from ._coo import (
    clip,
    tensordot,
    dot,
    matmul,
    triu,
    tril,
    where,
    nansum,
    nanmean,
    nanprod,
    nanmin,
    nanmax,
    nanreduce,
    roll,
    kron,
    argwhere,
    isposinf,
    isneginf,
    result_type,
    diagonal,
    diagonalize,
    elemwise,
    as_coo,
)


[docs]def stack(arrays, axis=0, compressed_axes=None): """ Stack the input arrays along the given dimension. Parameters ---------- arrays : Iterable[SparseArray] The input arrays to stack. axis : int, optional The axis along which to stack the input arrays. compressed_axes : iterable, optional The axes to compress if returning a GCXS array. Returns ------- SparseArray The output stacked array. Raises ------ ValueError If all elements of :code:`arrays` don't have the same fill-value. See Also -------- numpy.stack : NumPy equivalent function """ from ._coo import COO if any(isinstance(arr, COO) for arr in arrays): from ._coo import stack as coo_stack return coo_stack(arrays, axis) else: from ._compressed import stack as gcxs_stack return gcxs_stack(arrays, axis, compressed_axes)
[docs]def concatenate(arrays, axis=0, compressed_axes=None): """ Concatenate the input arrays along the given dimension. Parameters ---------- arrays : Iterable[SparseArray] The input arrays to concatenate. axis : int, optional The axis along which to concatenate the input arrays. The default is zero. compressed_axes : iterable, optional The axes to compress if returning a GCXS array. Returns ------- SparseArray The output concatenated array. Raises ------ ValueError If all elements of :code:`arrays` don't have the same fill-value. See Also -------- numpy.concatenate : NumPy equivalent function """ from ._coo import COO if any(isinstance(arr, COO) for arr in arrays): from ._coo import concatenate as coo_concat return coo_concat(arrays, axis) else: from ._compressed import concatenate as gcxs_concat return gcxs_concat(arrays, axis, compressed_axes)
[docs]def eye(N, M=None, k=0, dtype=float, format="coo", compressed_axes=None): """Return a 2-D array in the specified format with ones on the diagonal and zeros elsewhere. Parameters ---------- N : int Number of rows in the output. M : int, optional Number of columns in the output. If None, defaults to `N`. k : int, optional Index of the diagonal: 0 (the default) refers to the main diagonal, a positive value refers to an upper diagonal, and a negative value to a lower diagonal. dtype : data-type, optional Data-type of the returned array. format : str, optional A format string. compressed_axes : iterable, optional The axes to compress if returning a GCXS array. Returns ------- I : SparseArray of shape (N, M) An array where all elements are equal to zero, except for the `k`-th diagonal, whose values are equal to one. Examples -------- >>> eye(2, dtype=int).todense() # doctest: +NORMALIZE_WHITESPACE array([[1, 0], [0, 1]]) >>> eye(3, k=1).todense() # doctest: +SKIP array([[0., 1., 0.], [0., 0., 1.], [0., 0., 0.]]) """ from sparse import COO if M is None: M = N N = int(N) M = int(M) k = int(k) data_length = min(N, M) if k > 0: data_length = max(min(data_length, M - k), 0) n_coords = np.arange(data_length, dtype=np.intp) m_coords = n_coords + k elif k < 0: data_length = max(min(data_length, N + k), 0) m_coords = np.arange(data_length, dtype=np.intp) n_coords = m_coords - k else: n_coords = m_coords = np.arange(data_length, dtype=np.intp) coords = np.stack([n_coords, m_coords]) data = np.array(1, dtype=dtype) return COO( coords, data=data, shape=(N, M), has_duplicates=False, sorted=True ).asformat(format, compressed_axes=compressed_axes)
[docs]def full(shape, fill_value, dtype=None, format="coo", compressed_axes=None): """Return a SparseArray of given shape and type, filled with `fill_value`. Parameters ---------- shape : int or tuple of ints Shape of the new array, e.g., ``(2, 3)`` or ``2``. fill_value : scalar Fill value. dtype : data-type, optional The desired data-type for the array. The default, `None`, means `np.array(fill_value).dtype`. format : str, optional A format string. compressed_axes : iterable, optional The axes to compress if returning a GCXS array. Returns ------- out : SparseArray Array of `fill_value` with the given shape and dtype. Examples -------- >>> full(5, 9).todense() # doctest: +NORMALIZE_WHITESPACE array([9, 9, 9, 9, 9]) >>> full((2, 2), 9, dtype=float).todense() # doctest: +SKIP array([[9., 9.], [9., 9.]]) """ from sparse import COO if dtype is None: dtype = np.array(fill_value).dtype if not isinstance(shape, tuple): shape = (shape,) if compressed_axes is not None: check_compressed_axes(shape, compressed_axes) data = np.empty(0, dtype=dtype) coords = np.empty((len(shape), 0), dtype=np.intp) return COO( coords, data=data, shape=shape, fill_value=fill_value, has_duplicates=False, sorted=True, ).asformat(format, compressed_axes=compressed_axes)
[docs]def full_like(a, fill_value, dtype=None, format=None, compressed_axes=None): """Return a full array with the same shape and type as a given array. Parameters ---------- a : array_like The shape and data-type of the result will match those of `a`. dtype : data-type, optional Overrides the data type of the result. format : str, optional A format string. compressed_axes : iterable, optional The axes to compress if returning a GCXS array. Returns ------- out : SparseArray Array of `fill_value` with the same shape and type as `a`. Examples -------- >>> x = np.ones((2, 3), dtype='i8') >>> full_like(x, 9.0).todense() # doctest: +NORMALIZE_WHITESPACE array([[9, 9, 9], [9, 9, 9]]) """ if format is None and not isinstance(a, np.ndarray): format = type(a).__name__.lower() else: format = "coo" if hasattr(a, "compressed_axes") and compressed_axes is None: compressed_axes = a.compressed_axes return full( a.shape, fill_value, dtype=(a.dtype if dtype is None else dtype), format=format, compressed_axes=compressed_axes, )
[docs]def zeros(shape, dtype=float, format="coo", compressed_axes=None): """Return a SparseArray of given shape and type, filled with zeros. Parameters ---------- shape : int or tuple of ints Shape of the new array, e.g., ``(2, 3)`` or ``2``. dtype : data-type, optional The desired data-type for the array, e.g., `numpy.int8`. Default is `numpy.float64`. format : str, optional A format string. compressed_axes : iterable, optional The axes to compress if returning a GCXS array. Returns ------- out : SparseArray Array of zeros with the given shape and dtype. Examples -------- >>> zeros(5).todense() # doctest: +SKIP array([0., 0., 0., 0., 0.]) >>> zeros((2, 2), dtype=int).todense() # doctest: +NORMALIZE_WHITESPACE array([[0, 0], [0, 0]]) """ if compressed_axes is not None: check_compressed_axes(shape, compressed_axes) return full(shape, 0, np.dtype(dtype)).asformat( format, compressed_axes=compressed_axes )
[docs]def zeros_like(a, dtype=None, format=None, compressed_axes=None): """Return a SparseArray of zeros with the same shape and type as ``a``. Parameters ---------- a : array_like The shape and data-type of the result will match those of `a`. dtype : data-type, optional Overrides the data type of the result. format : str, optional A format string. compressed_axes : iterable, optional The axes to compress if returning a GCXS array. Returns ------- out : SparseArray Array of zeros with the same shape and type as `a`. Examples -------- >>> x = np.ones((2, 3), dtype='i8') >>> zeros_like(x).todense() # doctest: +NORMALIZE_WHITESPACE array([[0, 0, 0], [0, 0, 0]]) """ if format is None and not isinstance(a, np.ndarray): format = type(a).__name__.lower() else: format = "coo" if hasattr(a, "compressed_axes") and compressed_axes is None: compressed_axes = a.compressed_axes return zeros( a.shape, dtype=(a.dtype if dtype is None else dtype), format=format, compressed_axes=compressed_axes, )
[docs]def ones(shape, dtype=float, format="coo", compressed_axes=None): """Return a SparseArray of given shape and type, filled with ones. Parameters ---------- shape : int or tuple of ints Shape of the new array, e.g., ``(2, 3)`` or ``2``. dtype : data-type, optional The desired data-type for the array, e.g., `numpy.int8`. Default is `numpy.float64`. format : str, optional A format string. compressed_axes : iterable, optional The axes to compress if returning a GCXS array. Returns ------- out : SparseArray Array of ones with the given shape and dtype. Examples -------- >>> ones(5).todense() # doctest: +SKIP array([1., 1., 1., 1., 1.]) >>> ones((2, 2), dtype=int).todense() # doctest: +NORMALIZE_WHITESPACE array([[1, 1], [1, 1]]) """ if compressed_axes is not None: check_compressed_axes(shape, compressed_axes) return full(shape, 1, np.dtype(dtype)).asformat( format, compressed_axes=compressed_axes )
[docs]def ones_like(a, dtype=None, format=None, compressed_axes=None): """Return a SparseArray of ones with the same shape and type as ``a``. Parameters ---------- a : array_like The shape and data-type of the result will match those of `a`. dtype : data-type, optional Overrides the data type of the result. format : str, optional A format string. compressed_axes : iterable, optional The axes to compress if returning a GCXS array. Returns ------- out : SparseArray Array of ones with the same shape and type as `a`. Examples -------- >>> x = np.ones((2, 3), dtype='i8') >>> ones_like(x).todense() # doctest: +NORMALIZE_WHITESPACE array([[1, 1, 1], [1, 1, 1]]) """ if format is None and not isinstance(a, np.ndarray): format = type(a).__name__.lower() else: format = "coo" if hasattr(a, "compressed_axes") and compressed_axes is None: compressed_axes = a.compressed_axes return ones( a.shape, dtype=(a.dtype if dtype is None else dtype), format=format, compressed_axes=compressed_axes, )
[docs]def outer(a, b, out=None): """ Return outer product of two sparse arrays. Parameters ---------- a, b : sparse.SparseArray The input arrays. out : sparse.SparseArray The output array. Examples -------- >>> import numpy as np >>> import sparse >>> a = sparse.COO(np.arange(4)) >>> o = sparse.outer(a, a) >>> o.todense() array([[0, 0, 0, 0], [0, 1, 2, 3], [0, 2, 4, 6], [0, 3, 6, 9]]) """ return np.multiply.outer(a, b, out=out)
def asnumpy(a, dtype=None, order=None): """Returns a dense numpy array from an arbitrary source array. Args: a: Arbitrary object that can be converted to :class:`numpy.ndarray`. order ({'C', 'F', 'A'}): The desired memory layout of the output array. When ``order`` is 'A', it uses 'F' if ``a`` is fortran-contiguous and 'C' otherwise. Returns: numpy.ndarray: Converted array on the host memory. """ from ._sparse_array import SparseArray if isinstance(a, SparseArray): a = a.todense() return np.array(a, dtype=dtype, copy=False, order=order)